Efficient Oxidation of Alkane with O₂ and H₂ by Eu–Ti–Pt Catalytic System

Ichiro Yamanaka,* Toshikazu Gomi, Takashi Nabeta, and Kiyoshi Otsuka Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8552

(Received August 8, 2005; CL-051020)

Alkane was efficiently oxidized to alcohol and ketone with O₂ and H₂ by EuCl₃–TiO(acac)₂–Pt/SiO₂ catalytic system with very high H₂-utilization efficiencies, 75% for adamantane and 60% for cyclohexane oxidations. ESR studies suggested that electrons originated in H₂ effectively conducted to O₂ through Pt, Eu³⁺/Eu²⁺, and Ti⁴⁺/Ti³⁺. Eu²⁺ and Ti³⁺ species reductively activated O₂, generating active oxygen species.

Oxidation of alkane remains an attractive topic in organic synthesis and catalysis under mild conditions. An essential point is how to catalytically generate active oxygen species. H_2O_2 is a useful and effective oxidant for the oxidation.¹ H_2O_2 , however, is an expensive oxidant for production of basic chemicals. A candidate of an efficient and economic oxidant is a gas mixture of O_2 and H_2 . Monooxygenase activates O_2 with NADH corresponding to H_2 and oxygenates hydrocarbons. Since an artificial model of monooxygenase P-450 (Mn-TPP, Pt-colloid, O_2 , and H_2) has been reported by Tabushi,² several catalytic oxidation systems have been studied (Eq 1).³

$$R-H + O_2 + H_2(2e^-, 2H^+) \rightarrow R-OH + H_2O.$$
 (1)

A serious problem is a large amount of H₂O formation through deep reduction of O₂ (2H₂ + O₂ \rightarrow 2H₂O). When H₂utilization efficiency (*H*₂-*eff*) was defined by Eq 2, the *H*₂-*eff* values were lower than 20% in previous works.³ In other words, 80% H₂ was uselessly consumed to H₂O formation.

$$H_2$$
-eff = (oxygenates yield)/(H₂O yield) × 100(%). (2)

Recently, we have reported the Eu(OTf)₃-TiO(acac)₂-Pt/ SiO₂ catalytic system which was active for the hydroxylation of benzene to phenol with O2 and H2.4 The H2-eff increased with increasing P(H₂) for the formation of phenol but hydrogenation of benzene to cyclohexane became dominant above 50 kPa. The positive dependence of the H_2 -eff on P(H₂) suggested that higher P(H₂) would be favor for activation of O₂ by the Eu-Ti-Ptcatalytic system. Therefore, we focused in oxidation of alkanes, especially adamantane to 1-adamantanol 1, 2-adamanatanol 2, and 2-adamantanone 3. Adamantane oxygenates are essential compounds for medicines of Perkinson disease, anticancer and anti-HIV. 2 and 3 are essential for the synthesis of photoresist materials with ArF laser light.5 Therefore, we are able to expect a large demand of adamantane oxygenates, especially 2 and 3. Adamantane oxygenates are now manufactured by the sulfuric acid-oxidation method which is not environmental friendly process.5

We applied the Eu(OTf)₃ (6 mM)–TiO(acac)₂ (1 mM)– 1 wt % Pt/SiO₂ (0.1 g) which was active for the hydroxylation of benzene,⁴ to the oxidation of adamantane (50 mM in MeCO₂H) with O₂ (33.8 kPa) and H₂ (67.5 kPa). Major products were **1**, **2**, **3**, and minor ones were 1,3-adamantadiol and 5-hydroxy-2-adamantanone. The sum yield of adamantane oxygenates was fairly good about 29.1%, but the H_2 -eff of 6% was lower than that of the benzene hydroxylation (10%).

It was found that counter anion species of Eu³⁺ strongly affected the catalytic activity for the oxidation. EuCl₃ and Eu(ClO₄)₃ shows the good oxidation activities, 35.3 and 34.9% yields, and the higher H_2 -eff of 22.3 and 22.1%, respectively. Eu(NO₃)₃, Eu(OAc)₃, and Eu(acac)₃ were inactive.⁴ EuCl₃ catalyst is more favor for the oxidation because of the higher selectivity to the useful secondary oxygenate (**2** and **3**), 49% (EuCl₃) > 44% (Eu₂(ClO₄)₃) > 36% (Eu(OTf)₃).

After detailed studies in influences of various reaction conditions on the adamantane oxidation, it was found that lower concentrations of EuCl₃ and TiO(acac)₂ and higher P(H₂) were favor for the efficient oxidation. Figure 1 shows the effects of $P(H_2)$ on the oxidation. The formation rates of 1, 2, 3, and the yield of H₂O increased with increasing P(H₂). The formation rates were maximum around $P(H_2) = 80 \text{ kPa}$. It is to be noted that the H₂O yield sharply decreased with increasing $P(H_2) >$ 75 kPa rather than decreasing in the formation rates of 1, 2, and 3. Therefore, the H_2 -eff drastically increased with $P(H_2) >$ 80 kPa. The highest H_2 -eff was 75% with 14% yield at $P(H_2) = 96 \text{ kPa}$ (P(O₂) = 5 kPa) in 1 h. This 75% H₂-eff is excellent to compare with the values of other oxidation system.³ A ratio of secondary (2 and 3) and tertiary (1) oxygenate yields per a number of C-H bond (2°:3°) characterizes a nature of active oxygen species. The $2^{\circ}:3^{\circ}$ values were constant (1:2.8) at all P(H₂). This fact suggests that the drastic increase in the H_2 -eff is due to the deceleration of the deep reduction of O_2 to

Figure 1. Effect of $P(H_2)$ on the adamantane oxidation with O_2 catalyzed by EuCl₃ 1 mM, TiO(acac)₂ 0.167 mM, and Pt/SiO₂ 0.1 g at 40 °C.

 $\mathrm{H}_{2}\mathrm{O}$ and not due to changing of the reactivity of active oxygen species.

We studied kinetic curves of the adamantane oxidation at $P(H_2) = 96$ and $P(O_2) = 5$ kPa. Yields of adamantane oxygenates linearly increased with reaction times but slightly decelerated after 2 h. The H_2 -eff was extrapolated to ca. 100% at early stage of the oxidation but decreased with reaction time, 46% at 3 h. When H₂O of 1 mmol corresponding to a H₂O yield at 3 h was added in the initial reaction mixture, the formation rate of oxygenates decelerated 0.6 times as slow as the standard one. This fact suggests that H₂O accumulated by equiv. 1 inhibits the oxidation activity. Dehydration treatment should be essential for the efficient continuous oxidation of adamantane.

In order to know that the significant high H_2 -eff is peculiar to the adamantane oxidation or universal to alkane oxidation, we studied the oxidation of cyclohexane which C–H bond (2°) energy was 94 kcal mol⁻¹ as strong as that for adamantane. We observed a very similar dependence of the cyclohexane oxidation on P(H₂). Formation rates of cy-C₆H₁₁OH, cy-C₆H₁₀O, CO₂, and H₂O were maximum at P(H₂) = 80 kPa. The H_2 -eff increased above P(H₂) = 80 kPa and showed the maximum of 60% at P(H₂) = 96 kPa. The H_2 -eff was extrapolated to 90% at the early stage of the oxidation. These facts suggest that the EuCl₃– TiO(acac)₂–Pt/SiO₂ catalytic system can selectively activate O₂ and oxygenate alkanes.

To obtain information for the oxidation potential of the active oxygen species, oxidation of stable gaseous alkanes (propane, ethane, and methane) was carried out. A gas mixture of alkane (34 kPa), H_2 (62), and O_2 (5) was bubbled through the EuCl₃-TiO(acac)₂-Pt/SiO₂/MeCO₂H mixture at 298 K. In propane oxidation (1° C–H bond: 97 kcal mol $^{-1}$ and 2° C–H bond: 94), significant yields of 2-propanol, acetone and 1-propanol, propionaldehyde were obtained. The sum formation rates of oxygenates was 150 μ mol h⁻¹ with 10% H₂-eff. This value is fairly high though the concentration of propane is low. A ratio of $1^{\circ}:2^{\circ}$ was 1:7. Ethane (C–H bond: 98 kcal mol⁻¹) was also oxygenated to ethanol and acetaldehyde but the formation rate of the sum of the products was only 20 μ mol h⁻¹ with a low H_2 -eff of 1%. On the other hand, no significant formation of products was observed in the CH₄ oxidation (C-H bond: $104 \text{ kcal mol}^{-1}$). The maximum oxidation potential of the active oxygen species is about 98 kcal mol⁻¹. A low $1^{\circ}:2^{\circ}:3^{\circ}$ value of 1:7:20 suggests radical character of the active oxygen species rather than electrophilic one.⁶

We carried out ESR studies to clarify oxidation states of Eu and Ti reduced with H₂ by Pt/SiO₂. In Eu(OTf)₃-Pt/SiO₂ system (Figure 2(1)), a broad ESR signal was observed at g =2.00, which was assigned to Eu^{2+} .⁷ Second, a very weak ESR signal was observed at g = 1.95 for TiO(acac)₂-Pt/SiO₂ system (2), which was assigned to $Ti^{3+.8}$ This result suggests that reduction of Ti⁴⁺ with H₂ by Pt/SiO₂ is very slow. In the case of Eu(OTf)₃-TiO(acac)₂-Pt/SiO₂ system (3), a broad signal of Eu^{2+} and a strong signal of Ti^{3+} (around g = 1.95) were overlapped in the large signals. This result suggests that Ti⁴⁺ reduces to Ti^{3+} through a mediation of Eu^{3+}/Eu^{2+} . In other word, electrons originated H₂ conduct to Pt, Eu, and Ti. To obtain direct information for the active oxygen species, a gas mixture of O2 and H₂ was introduced into the Eu-Ti-Pt catalytic system and quenched by liquid N2. We could not observe any significant ESR signals. This result proposed that Eu²⁺ and Ti³⁺ species im-

Figure 2. ESR spectra of (1) $Eu(OTf)_3$ 6 mM, (2) $TiO(acac)_2$ 1 mM, and (3) the mixture in MeCO₂H after reduction with H₂ (1 atm) by Pt/SiO₂ for 30 min at 298 K and quenched by liquid N₂.

mediately react with O_2 . A life of reduced oxygen species may be very short or silent for the ESR absorption.

We are able to propose a model of Eu–Ti–Pt catalysis for the activation of O₂. Step 1: Pt⁰ dissociatively activates H₂ to H. Step 2: H• (e⁻ and H⁺) reduces Eu³⁺ to Eu²⁺ over Pt⁰. Step 3: Eu²⁺ reduces Ti⁴⁺ to Ti³⁺. Step 4: Eu²⁺ and Ti³⁺ species should concertedly activate O₂. Step 5: The active oxygen species selectively and effectively oxygenate C–H bonds (ca. 94 kcal mol⁻¹) of adamantane and cyclohexane. The active oxygen specie has radical character because of a low 1°:2°:3° value of 1:7:20. The reduction potential of H₂ (2e⁻) finally conducts to O₂ through Pt, Eu³⁺/Eu²⁺, and Ti⁴⁺/Ti³⁺. The three different functions of Eu, Ti, and Pt concert and perform the efficient and selective oxidation.

References

- K. Kamata, K. Yonehara, Y. Sumida, K. Yamaguchi, S. Hikichi, and N. Mizuno, *Science*, **300**, 964 (2003); P. Battioni, J. P. Reaud, J. F. Bartoli, M. Reina-Artiles, M. Fort, and D. Mansuy, *J. Am. Chem. Soc.*, **110**, 8462 (1988).
- 2 I. Tabushi and N. Koga, J. Am. Chem. Soc., 101, 6456 (1979).
- T. Hayashi, K. Tanaka, and M. Haruta, J. Catal., **178**, 566 (1998);
 T. Miyake, M. Hamada, Y. Sasaki, and M. Oguri, Appl. Catal., A, **131**, 33 (1995);
 T. Tatsumi, K. Yuasa, and H. Tominaga, J. Chem. Soc., Chem. Commun., **1992**, 1446;
 K. Otsuka, I. Yamanaka, and K. Hosokawa, Nature, **345**, 697 (1990);
 A. Kunai, T. Wani, Y. Uehara, F. Iwasaki, Y. Kuroda, S. Ito, and K. Sasaki, Bull. Chem. Soc. Jpn., **67**, 2613 (1989);
 N. Herron and C. A. Tolman, J. Am. Chem. Soc., **109**, 2837 (1987).
- 4 I. Yamanaka, T. Nabeta, S. Takenaka, and K. Otsuka, *Stud. Surf. Sci. Catal.*, **130**, 815 (2000).
- 5 K. Nishimura and S. Suzuki, Aromatikkusu, 53, 102 (2001).
- 6 M. J. Nappa and C. A. Tolman, Inorg. Chem., 24, 4711 (1985).
- 7 H. Ebendorff-Heidepriem and D. Ehrt, J. Phys., 11, 7627 (1999).
- 8 S. A. Sergeev, V. A. Poluboyarov, V. A. Zakharov, V. F. Anufrienko, and G. D. Bukatov, *Makromol. Chem.*, 187, 243 (1986).